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ABSTRACT 26 

Corn (Zea mays L.) kernel infection by Aspergillus flavus and subsequent aflatoxin 27 

accumulation in grain can have a deleterious effect on both humans and animals that consume 28 

contaminated grain. Predicting the aflatoxin risk is challenging due to complex interactions of 29 

biotic and abiotic stress factors that govern and exacerbate the phenomenon. The goal of this 30 

study was to determine whether a drought index could be used to predict the risk for pre-harvest 31 

aflatoxin contamination in corn. Risk assessment was approached at: 1) field (plot) level with 32 

data obtained from an in-field controlled experiment (Mississippi study), and 2) state level, 33 

where corn fields were sampled at a county level (Georgia study). The data used for this study 34 

consisted of historical records on aflatoxin contamination collected over thirteen growing 35 

seasons from 2000 to 2011, 2013, and 2014 at Mississippi State, Mississippi (1), and from 36 

random corn fields in 53 counties across Georgia between 1977 and 2004 (2). A controlled 37 

experiment was conducted at Mississippi with two soil types (a Leeper silty clay loam and a 38 

Myatt loam), and three commercial hybrids characterized by different susceptibility levels to 39 

aflatoxin contamination. The Agricultural Reference Index for Drought (ARID), a generic 40 

drought index for calculating drought on daily basis was evaluated as an aflatoxin risk prediction 41 

tool. Mid-silk day was selected to split each growing season into two time periods, which were 42 

further divided into positive and negative weeks representing weeks after and before mid-silk, 43 

respectively. Weekly ARID factors were calculated for all periods to evaluate the in-season 44 

alterations in aflatoxin risk. In both studies, multiple logistic regression models were used to 45 

predict aflatoxin risk as a function of the weekly ARID values. In Mississippi, risk level changes 46 

were additionally tested according to soil type and corn hybrid aflatoxin susceptibility. The 47 

United States Food and Drug Administration restricts corn grain consumption by humans and 48 

young animals if the contamination level is above 20 μg/kg; thus, this threshold (20 μg/kg) was 49 
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selected to develop a binary dependent variable for the logistic model from the raw aflatoxin 50 

data. The results revealed that ARID might be used as a predictive tool to assess aflatoxin risk, 51 

soil type and hybrid susceptibility to aflatoxin contamination were statistically significant 52 

independent factors, and there are critical week windows during the growing season when 53 

changes in drought conditions affect the likelihood for aflatoxin contamination. These findings 54 

can be used to minimize risk by adapting site-specific management strategies such as triggering 55 

irrigation during critical risk weeks, selecting the most appropriate hybrid for a given 56 

site/location based on soil type, and determining optimum harvest date. 57 

 58 

Keywords: Aspergillus flavus; infection; logistic regression; modeling; risk assessment; maize  59 
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1. Introduction 60 

Aflatoxin contamination in corn is a worldwide issue since the toxins have adverse health 61 

effects on humans and domestic animals (Damianidis et al., 2015; Robens and Cardwell, 2003). 62 

Moreover, aflatoxin contamination raises food-safety concerns and impacts the trade of corn 63 

grain and its byproducts, and thus, results in significant economic losses (Abbas et al., 2012; 64 

Blandino et al., 2008; CAST, 2003). Aflatoxins are difuro-cumarins biosynthesized secondary 65 

metabolites through a polyketide pathway (Fountain et al., 2014; Mishra and Das, 2003; Probst 66 

and Cotty, 2012) produced by several fungul species belonging to Aspergillus section Flavi 67 

(CAST, 2003) with A. flavus and A. parasiticus being the most common and of major concern 68 

(CAST, 2003; Diener et al., 1987; Klich, 2007). The most prevalent naturally occurring forms of 69 

aflatoxins include the toxins B1, B2, G1, and G2, with types B and G being usually synthesized by 70 

A. parasiticus and A. nomius, while A. flavus mainly produces B1 and B2 aflatoxins (Klich, 71 

2007).  72 

Despite aflatoxins discovery followed an outbreak of Turkey “X” disease in England in 1960 73 

(Austwick and Ayerst, 1963; Bayman and Cotty, 1990; Blount, 1961; Richard, 2008; Sargeant et 74 

al., 1961; Spensley, 1963), in many countries, the extent of aflatoxin contamination is not well 75 

known since there is a reluctance to report the problem (Payne and Widstrom, 1992). Aflatoxins 76 

are considered carcinogenic, mutagenic, teratogenic, and hepatotoxic compounds for both 77 

humans and animals (Blandino et al., 2008; Blaney et al., 2008; CAST, 2003; Fountain et al., 78 

2014; Molina and Giannuzzi, 2002). Therefore, 48 countries have established regulatory actions 79 

and are monitoring aflatoxin contamination in food, with 21 countries establishing tolerance 80 

levels in feedstuffs (Dohlman, 2003; Hawkins et al., 2008; Mishra and Das, 2003). The United 81 

States Food and Drug Administration (U.S. FDA) restricts consumption of corn grain by humans 82 



5 

 

and young animals if contamination levels exceed 20 μg of aflatoxin/kg of grain (U.S. Food and 83 

Drug Administration, 2000). 84 

Aflatoxin synthesis is more likely to occur in areas with tropical and subtropical climates 85 

(Streit et al., 2012). In recent decades, severe aflatoxicosis outbreaks have been reported in 86 

Kenya, India, and Malaysia (Lewis et al., 2005; Shephard, 2008). Recently, significant pre-87 

harvest corn contamination was reported in Northern Italy (Battilani et al., 2008a; Giorni et al., 88 

2007; Piva et al., 2006) and in Australia (Blaney et al., 2008). In the United States, corn infection 89 

and subsequent contamination is a chronic economic and health concern in the South (Davis et 90 

al., 1986; Diener et al., 1987; Payne and Widstrom, 1992). Given favorable weather patterns, in-91 

field contamination may also occur in Midwest as well (Payne and Widstrom, 1992; Wallin and 92 

Minor, 1986; Zuber and Lillehoj, 1979).  93 

Aflatoxin contamination occurs both pre-harvest and post-harvest. One tactic to mitigate 94 

contamination problems is to reduce the risk of infection prior to harvest. (Chauhan et al., 2015). 95 

This should reduce residual inoculum in harvested corn grain which is a source of further 96 

contamination under poor storage conditions. The in-field contamination is highly variable both 97 

within a field and among geographic areas and seasons (Battilani et al., 2008a; Hawkins et al., 98 

2008), reflecting the effect weather conditions have on A. flavus incidence (Cotty and Jaime-99 

Garcia, 2007) and plant predisposition to infection/contamination (Fountain et al., 2014). 100 

Aflatoxin contamination is exacerbated in seasons characterized by higher temperatures and 101 

lower than normal rainfall that may expose corn plants to drought stress from silking and through 102 

grain fill (Diener et al., 1987; Payne and Widstrom, 1992; Windham et al., 2009). Agricultural 103 

drought occurs when plant available water in the soil does not meet the atmospheric demand for 104 

evapotranspiration (Woli et al., 2012). Critical time windows when the risk for corn aflatoxin 105 
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contamination changes were identified in numerous studies (Battilani et al., 2008a; Damianidis et 106 

al., 2015; Hawkins et al., 2008; Widstrom et al., 1990; Windham et al., 2009). This includes: 1) a 107 

window extending between days 65 and 85 following planting when heat stress may result in 108 

increased contamination (Hawkins et al., 2008), and 2) the decadal intervals from late June to 109 

late August when drought, as quantified by an aridity index, were significantly correlated with 110 

aflatoxin contamination (Battilani et al., 2008a). Conclusively, drought stress around silking and 111 

during kernel development are the key risk factor for elevated Aspergillus infection and aflatoxin 112 

contamination in corn at the end of the season (Damianidis et al., 2015; Diener et al., 1987; Luo 113 

et al., 2010; Payne et al., 1986; Windham et al., 2009). 114 

Models have been used to answer questions related to research, crop management, 115 

policymaking, and to assess the risk associated with human and animal health (Garcia et al., 116 

2009; Prandini et al., 2009). If aflatoxin risk could be predicted, then human/animal health 117 

concerns, and the subsequent economic losses, could be minimized. Numerous in vitro studies 118 

had reported modeling efforts to predict aflatoxin contamination based on variables such as 119 

temperature, water activity, and pH (Abdel-Hadi et al., 2012; Garcia et al., 2013; Molina and 120 

Giannuzzi, 2002; Pitt, 1993). Although those models could predict contamination, they have not 121 

been evaluated under field conditions (Chauhan et al., 2008; 2015).  122 

Several attempts to predict the in-field aflatoxin corn contamination based on environmental 123 

conditions have been recently reported by using empirical or mechanistic models (Battilani et al., 124 

2008a; 2013; Chauhan et al., 2008; 2015). However, development of mechanistic models might 125 

require data or assumptions based on data coming from in vitro studies (e.g. sporulation, 126 

dispersal, germination, infection, fungal growth, and toxin production rates) that may not be 127 

always readily available. Additionally, aflatoxin production is strain and media specific (Luchese 128 
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and Harrigan, 1993; Sweeney and Dobson, 1998), making for challenging model development 129 

and application. Moreover, contamination levels from in vitro studies do not always correlate 130 

well with in vivo observations (Probst and Cotty, 2012). Therefore, models developed with data 131 

generated from artificial media (in vitro) should be used with caution for in-field corn aflatoxin 132 

contamination assessment (Chauhan et al., 2015). 133 

Ideally, an early predictive system should be simple in its approach, easy to implement, and 134 

should provide satisfactory predictive accuracies. Logistic regression is a multivariate technique 135 

that satisfies those criteria and has been used in human (Fei et al., 2017; Tu et al., 1994) and 136 

plant epidemiology to assess risk and guide disease management decisions (Battilani et al., 137 

2008a; Paul and Munkvold, 2004). It has been used previously to assess the in-field risk of 1) 138 

gray leaf spot of corn, caused by Cercospora zeae-maydis (Paul and Munkvold, 2004), and 2) 139 

fumonisin contamination in corn (Battilani et al., 2008b). Battilani et al. (2008a) extended this 140 

approach to predict aflatoxin contamination in corn in Northern Italy by using as independent 141 

variable an aridity index. However, in their approach Battilani et al. (2008a) did not take into 142 

consideration the relationship between soil plant available water and the evapotranspiration 143 

demand during the growing season which may lead to drought; a prerequisite for aflatoxin 144 

contamination in corn (Diener et al., 1987; Payne and Widstrom, 1992). The Agricultural 145 

Reference Index for Drought (ARID), a generic and simple to use drought index, takes into 146 

account plant available water and daily evapotranspiration (Woli et al., 2012; Woli et al., 2013). 147 

ARID might be used to quantify agricultural drought and estimate its effects on crop yields 148 

(Woli et al., 2012; Woli et al., 2013). However, assessing in-season aflatoxin contamination in 149 

corn with a generic drought index in the Southeastern United States has yet to be done. The 150 

hypothesis driving this study was that changes in spatial and in-season drought lead to changes in 151 
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the risk for aflatoxin contamination of corn. Therefore, the objectives of this study were to: 1) 152 

determine whether a drought index could be used to predict the risk for aflatoxin contamination 153 

in corn, 2) assess in-season risk differences among soil types and among hybrids, and 3) explore 154 

the applicability to predict the risk at regional level when minimum data are available. 155 

2. Materials and Methods 156 

Two aflatoxin datasets were used in the study including aflatoxin contamination data 157 

collected from field experiments in Mississippi State, Mississippi (MS), USA; and data on 158 

aflatoxin contamination from corn samples collected from randomly surveyed fields across 53 159 

counties in South Georgia (GA), USA. 160 

2.1 Mississippi dataset 161 

Field experiments were conducted from 2000 to 2011, 2013, and 2014 at the R. R. Foil Plant 162 

Science Research Center located at Mississippi State, Mississippi (Windham et al., 2009). The 163 

experimental design was a split plot design with corn hybrids assigned to the main plots, while 164 

inoculation methods (natural infection, side needle, and spray silks) were allotted to sub-plots 165 

(Windham et al., 2009). Hybrids were selected and classified into three categories based on their 166 

susceptibility to infection by Aspergillus flavus and subsequent aflatoxin contamination. Two of 167 

the cultivars were characterized as moderately susceptible (indicated hereafter as hybrid 1 and 168 

hybrid 2) and a third (hybrid 3) as highly susceptible to aflatoxin contamination. Starting in 2000 169 

and up to 2005 the experiment was conducted for two soil types, a Leeper silty clay loam (Fine, 170 

smectitic, nonacid, thermic Vertic Epiaquepts) and a Myatt loam (Fine-loamy, siliceous, active, 171 

thermic Typic Endoaquults). The water-holding capacity at field capacity of the Leeper silty clay 172 

loam and the Myatt loam was 28% and 21%, respectively. From 2006 and after, the study was 173 
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conducted only for the heavier soil type (Leeper silty clay loam). Corn ear samples were 174 

harvested from each plot, processed, and analyzed for aflatoxin contamination (μg/kg) as 175 

described by Windham et al. (2009). Contamination data related to natural infection by A. flavus 176 

were only considered for the analysis herein. This comprehensive database contained 240 177 

aflatoxin contamination observations and was divided into a model development dataset and a 178 

model evaluation dataset. Twenty percent of the data were randomly selected to create an 179 

evaluation dataset, while the rest of the data (80%) were used for model development. 180 

2.2 Georgia dataset 181 

A total of 818 corn samples were collected from random farm fields located in 53 counties in 182 

Georgia from 1977 to 2004. Up to the late 1990’s, aflatoxin contamination and identification was 183 

determined by Thin Layer Chromatography (Brown et al., 1993; Guo et al., 1995), and thereafter 184 

(from 2000 to 2004), the VICAM AflaTest
®
 (VICAM, Watertown, Massachusetts) analytical 185 

method was used. The database was unbalanced, since fields were not sampled from all counties 186 

every season. Samples were assigned to Georgia counties where the sampled corn field was 187 

located. The comprehensive survey database was randomly separated into a model development 188 

dataset (80% of the data) and evaluation (20% of the data) dataset. 189 

2.3 Quantifying seasonal drought 190 

The Agricultural Reference Index for Drought (ARID) is a simple drought index used to 191 

monitor, predict, and estimate the effect of drought timing and degree on crop yields (Woli et al., 192 

2012). ARID reflects seasonal in-field drought conditions, requires a minimal number of site 193 

specific weather parameters, and is calculated on a daily basis. ARID values range from 0 to 1; 0 194 

indicates no water deficit, and 1 signifies maximum water deficit. 195 
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Ideally, weather parameters required to calculate ARID include daily maximum, minimum, 196 

and dew point temperatures along with precipitation, wind speed, potential evapotranspiration 197 

(ETo), and solar radiation. However, ARID calculations could be completed even when weather 198 

parameters are missing (e.g. daily maximum temperature, minimum temperature, and rainfall 199 

will suffice) (Woli et al., 2012). For the Mississippi data, ARID calculations were based on 200 

weather data provided by the Mississippi Agricultural and Forestry Experimental Station, while 201 

meteorological data for Georgia analysis were retrieved from: 1) DAYMET database covering 202 

the timespan from 1980 – 2004 (Thornton et al., 2014), and 2) CRONOS database for seasons 203 

1977 to 1979 (State Climate Office of North Carolina, 2016). For Mississippi data, ETo was 204 

estimated by FAO Penman-Monteith method (Allen et al., 2006); for Georgia, where wind speed 205 

and dew temperature data were not available for the seasons studied, ETo was alternatively 206 

estimated by Hargreaves equation as described by Allen et al. (2006). Whenever the Hargreaves 207 

equation is used for ETo estimation in a region, comparison with ETo estimates by the FAO 208 

Penman-Monteith model is suggested (Allen et al., 2006). Univariate regression analysis 209 

indicated that for the study area in Georgia the two methods were comparable (R
2
 ranged from 210 

0.9360 to 0.9807; for the eight locations tested). 211 

2.4 Logistic regression – concepts 212 

Logistic regression requires the dependent variable to be formulated as a binary factor, and it 213 

can be used to estimate the probabilities for an event to occur based on preselected independent 214 

predictors. The logistic regression model can be described by the equation: 215 

 

 

𝑃(𝐸𝑣𝑒𝑛𝑡) =  
𝑒𝛽𝜊+𝛽1𝜒1+𝛽2𝜒2+⋯+𝛽𝑛

1 + 𝑒𝛽𝜊+𝛽1𝜒1+𝛽2𝜒2+⋯+𝛽𝑛
 (1) 
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 216 

where e is the exponential constant, βο, β1, β2, and βn are the estimated coefficients, and x1, x2, 217 

and xn are the independent variables. P(Event) is the probability for an event to occur; in this 218 

study to have a contaminated sample. 219 

In binary response models (e.g. logistic models), model assessment can be accomplished by 220 

generating the Receiver Operating Characteristic (ROC) curve and calculating the area under the 221 

ROC curve (AUC) (Damianidis et al., 2015; SAS, 2015). The AUCs of the developed and the 222 

evaluated models are then compared for equality at a preselected level of significance with the 223 

ROC curve of a model predicting by chance (model with only intercept). 224 

The AUC provides a graphical summary to assess the predictive power of a binary model 225 

(Allison, 2012). It does not depend on an arbitrary cutpoint value needed for the construction of a 226 

classification table, which inherently has an influence on the classification of test results as 227 

events or non-events (Allison, 2012). The area under the ROC curve takes values from 0 to 1; 228 

larger values correspond to stronger associations between predicted and observed values. A 229 

value of 0.5000 corresponds to a model with an intercept only, and thus, with no predictive 230 

power. The more the ROC curve departs from the forty five degree line the more accurate the 231 

model predicts. 232 

2.5 Database development for both studies 233 

Prior to conducting the logistic analysis the aflatoxin contamination data were transformed to 234 

a binary variable. The created binary variable was assigned a value of 1 (contaminated) and 0 235 

(not contaminated) when the aflatoxin levels of the corn samples were greater and smaller than 236 



12 

 

20 μg/kg, respectively; the limit set by U.S. FDA to restrict corn consumption by humans and 237 

young animals.  238 

Because the risk of aflatoxin contamination will be predicted based on in-season changes in 239 

drought conditions, weekly ARID values were calculated for two time intervals surrounding 240 

mid-silk day. Thus, each season was divided into positive weeks and negative weeks indicating 241 

time periods before and after mid-silk, respectively. The calculated weekly ARID values were 242 

used as independent predictors in the logistic models to assess in-season risk changes in aflatoxin 243 

contamination. Mid-silk was selected as a reference day for two reasons: 1) to remove the 244 

portion of the variability related to the different growing seasons, since plant growth and 245 

development depends greatly on weather conditions that are particular for each year and do not 246 

coincide with calendar days, and 2) as indicated in the literature, the likelihood for infection and 247 

contamination is greater around corn silking (Hawkins et al., 2008; Windham et al., 2009).  248 

2.6 Predicting aflatoxin risk with logistic regression at field (plot) level – Mississippi study 249 

For the current analysis, ARID was evaluated as a predictive tool for pre-harvest aflatoxin 250 

contamination. Multiple logistic regression was used to predict aflatoxin risk as a function of 251 

weekly ARID values, soil type, and hybrid susceptibility to infection and contamination. 252 

Additionally, risk level changes were studied in their association to soil type and corn hybrids. 253 

Statistical analyses were carried on with PROC logistic procedure in SAS version 9.3. 254 

Inclusion of all the weekly ARID values as predictive variables in the model resulted in high 255 

multicollinearity. Multicollinearity makes the estimated coefficients more unstable, and one way 256 

to mitigate the issue is by dropping collinear variables (Allison, 2012). Thus, all potential 257 

predictors (weekly ARID values) of aflatoxin risk were initially tested at the univariable level for 258 
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significance (p-value = 0.05). The Variance Inflation Factor (VIF) of the retained predictors was 259 

< 5, indicating that multicollinearity was alleviated and more robust estimates could be obtained. 260 

Logistic model development followed by including only significant weekly ARID independent 261 

variables as identified in the first step, and their association to the outcome at the multivariable 262 

level was also tested. The logistic model used for the Mississippi data set analysis is given by the 263 

following equation: 264 

 
𝑃(𝐴𝑓𝑙𝑎𝑡𝑜𝑥𝑖𝑛) =

𝑒𝛽0+𝛽1𝑆𝑜𝑖𝑙+𝛽2𝐻𝑦𝑏𝑟𝑖𝑑+𝛽𝑥1𝑊𝑒𝑒𝑘𝑥1+⋯+𝛽𝑥𝑛𝑊𝑒𝑒𝑘𝑥𝑛

1 + 𝑒𝛽0+𝛽1𝑆𝑜𝑖𝑙+𝛽2𝐻𝑦𝑏𝑟𝑖𝑑+𝛽𝑥1𝑊𝑒𝑒𝑘𝑥1+⋯+𝛽𝑥𝑛𝑊𝑒𝑒𝑘𝑥𝑛
 (2) 

 265 

where P(Aflatoxin) is the probability to have aflatoxin contamination above the selected 266 

threshold (20 μg/kg), e is the base of natural logarithm, βο, β1, β2, βx1,...βxn are the estimated 267 

coefficients, and Soil, Hybrid, Weekx1,…Weekxn are the independent variables that were entered 268 

into the model. Stepwise selection with entry and exit criteria levels equal to 0.10 and 0.20, 269 

respectively, was employed to define significant independent predictors during the model 270 

development phase. 271 

The predictive power of the developed model was assessed by external evaluation using the 272 

independent evaluation dataset (SAS, 2015). The estimated AUC for the developed model along 273 

with the ROC curve computed when the fitted model was applied to the independent dataset 274 

(external evaluation) were compared for equality at level of significance α = 0.05 with the 275 

uninformative model (a model predicting by chance; AUC = 0.5000).  276 

2.7 Predicting aflatoxin risk with logistic regression at regional level – Georgia study 277 

The data from Georgia were utilized to determine if ARID can be used as a tool to predict 278 

aflatoxin risk at a regional scale. Briefly, the comprehensive survey database was randomly 279 
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separated into a model development and evaluation datasets, and a binary response variable was 280 

constructed from the original aflatoxin contamination data as previously described.  281 

Missing data of planting dates and mid-silk day from the Georgia dataset forced several 282 

assumptions in order to retrieve that information from other sources. Planting dates from the 283 

state variety trials conducted by the University of Georgia at the experimental field research units 284 

in the Coastal Plain Region of Georgia in Tifton, Plains, and Midville, and the Wiregrass 285 

Research and Extension Center in Headland, Alabama were available from 1977 to 2004 286 

(Alabama Cooperative Extension System et al., 2016; The University of Georgia CAES, 2016). 287 

For each season, the four planting dates retrieved from the aforementioned corn trial studies, 288 

were averaged, and thus, a potential planting date for each year was calculated. In a given year, 289 

all the Georgia counties with aflatoxin contamination data were assigned the calculated averaged 290 

planting date as the actual planting date. Starting from this calculated planting date, mid-silk 291 

days were estimated based on growth degree units (GDU), calculated as [(daily maximum 292 

temperature + daily minimum temperature/2) - 10
o
C]. Estimated mid-silk stage, which occurred 293 

when 1250 – 1300 GDU were accumulated (Lee, 2016, personal communication) was used to 294 

split the growing season into weekly intervals following (positive) or preceding (negative) that 295 

day and weekly ARID values were calculated.  296 

Multicollinearity as indicated by VIF < 5 for independent model parameters was not an issue 297 

in this analysis. Thus, weekly ARID values starting at week nine before mid-silk and up to week 298 

nine after mid-silk were used as predictor variables for model development. Model development 299 

and model evaluation were done as described in the previous section. The logistic model was 300 

represented by:  301 
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𝑃(𝐴𝑓𝑙𝑎𝑡𝑜𝑥𝑖𝑛) =

𝑒𝛽0+𝛽𝑥1𝑊𝑒𝑒𝑘𝑥1+⋯+𝛽𝑥𝑛𝑊𝑒𝑒𝑘𝑥𝑛

1 + 𝑒𝛽0+𝛽𝑥1𝑊𝑒𝑒𝑘𝑥1+⋯+𝛽𝑥𝑛𝑊𝑒𝑒𝑘𝑥𝑛
 (3) 

 302 

where P(Aflatoxin) is the probability for aflatoxin contamination above the selected threshold 303 

(20 μg/kg), e is the base of natural logarithm, βο, βx1,...βxn are the estimated coefficients, 304 

Weekx1,…Weekxn are the independent weekly ARID values entered into the model. Significant 305 

independent predictors were identified by stepwise selection having entry and exit criteria levels 306 

equal to 0.05. 307 

3. Results and Discussion 308 

3.1 Predicting the risk at a field (plot) level 309 

Significant predictors (p-value < 0.10) for aflatoxin contamination risk in corn in Mississippi 310 

were soil type, hybrid, and drought levels represented by weekly-ARID values before and after 311 

mid-silk. Odds ratio estimates indicated an increased aflatoxin risk for the highly susceptible 312 

hybrid (hybrid 3) when compared to hybrids 1 and 2, which were characterized as moderately 313 

susceptible (Table 1). Additionally, corn grown in the heavier soil type (Leeper silty clay loam) 314 

showed a lower likelihood for aflatoxin contamination above the selected threshold of 20 μg/kg 315 

than corn grown in the Myatt loam. This agrees with observations from other studies indicating 316 

higher pre-harvest contamination levels for corn grown in coarse sandy soils than corn grown in 317 

finer textured soils (Davis et al., 1986; Jones et al., 1981). Due to the lower water holding 318 

capacities of the coarser textured soils, potentially, the plants are more prone to water stress 319 

through the growing season than when grown in heavier soil types. 320 

  321 
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Table 1: Odds ratio estimates and profile-likelihood confidence intervals for statistically 322 

significant independent variables for Mississippi data analysis as determined from the logistic 323 

regression model via stepwise selection with entry and exit values set to α = 0.10 and α = 0.20, 324 

respectively. 325 

Effect Unit Odds Ratio Estimates 90% Confidence Limits 

Moderately resistant 1 vs susceptible 1 0.127 0.057 0.285 

Moderately resistant 2 vs susceptible 1 0.195 0.091 0.418 

Silty clay loam vs loam 1 0.198 0.095 0.411 

Week 4 before mid-silk 0.1 1.226 1.044 1.440 

Week 1 before mid-silk 0.1 1.325 1.151 1.525 

Week 4 after mid-silk 0.1 1.224 1.079 1.390 

Week 8 after mid-silk 0.1 0.853 0.758 0.960 

Moderately resistant 1 & Moderately resistant 2 are moderately susceptible hybrids. 326 

Susceptible is highly susceptible hybrid. 327 

Silty clay loam = Leeper silt clay loam. 328 

Loam = Myatt loam 329 

 330 

The critical growing season periods when changes in in-field drought conditions influence 331 

the risk for aflatoxin contamination, included weeks four and one before mid-silk and weeks four 332 

and eight after mid-silk day (Table 1). Moreover, a 0.1 increase in in-field drought, as quantified 333 

by ARID, during weeks four and one before mid-silk and week four after mid-silk, revealed that 334 

the predicted odds for contamination to be above the preselected threshold of 20 μg/kg was 22.6, 335 

32.5, and 22.4% higher than the odds of not having contamination, respectively. Battilani et al. 336 

(2008a) had shown that drought had an influence on aflatoxin contamination in corn in Northern 337 

Italy, and defined as critical for contamination the timespan starting the last decade (10 days) of 338 

June and the first and last decade of August. Additionally, aflatoxin occurrence have usually 339 

been associated with higher than normal temperatures and low rainfalls around 340 

silking/pollination and grain filling period (20 – 60 days after flowering), both conditions that 341 

may increase drought stress (Diener et al., 1987; Payne and Widstrom, 1992; Widstrom et al., 342 

1990; Windham et al., 2009).  343 
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Interestingly, in this study the predicted odds to have an event (contaminated sample) were 344 

14.7% smaller than the odds to not have contamination for every 0.1 drought increase, as 345 

indicated by ARID index, during week eight after mid-silk (a near to harvest window) (Table 1). 346 

Rewetting events late in the season coinciding with the timespan just prior or during harvest 347 

delayed corn drying, favor unremitting aflatoxin synthesis, and thus, may increase toxin 348 

accumulation, particularly in years conducive for infection and contamination (Cotty and Jaime-349 

Garcia, 2007; Jaime-Garcia and Cotty, 2003; Jones et al., 1981).  350 

The relative risk for corn aflatoxin contamination above the threshold of 20 μg/kg was higher 351 

for all three hybrids when cultivated in the lighter soil type (Myatt loam) compared to the heavier 352 

soil type (Leeper silty clay loam) (Figure 1 and Figure 2). Increase in drought conditions during 353 

week four following mid-silk, other things equal, resulted in an increased contamination risk, as 354 

well, for all the scenarios shown in Figure 1.  355 

 356 
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Figure 1: Predicted probabilities (Mississippi analysis) for having aflatoxin contamination above 

the threshold of 20 μg/kg with changes in drought conditions on the fourth week after mid-silk, 

given that moderately (Hybrids 1 & 2) and highly (Hybrid 3) susceptible hybrids are cultivated 

under Leeper silty clay loam (solid line) and Myatt loam (dashed line). Three scenarios 

(columns) are presented herein for each hybrid (rows): 1) low (ARID=0.069), 2) medium 

(ARID=0.412) and 3) severe (ARID=0.755) drought conditions for the week prior mid-silk. 

Week four before mid-silk and week eight after mid-silk were set fixed to their respective mean 

values. 

 

 357 

For example, we found that the predicted probabilities for contamination above the threshold of 358 

20 μg/kg were greater than 50% (y-axis), when a highly susceptible hybrid (hybrid 3) was 359 

exposed to moderate (ARID = 0.412) or extreme drought (ARID = 0.755) during the week prior 360 

to mid-silk, even when no or low drought (e.g. ARID < 0.200, x-axis) occurred on week four 361 

after mid-silk, regardless of soil type (Figure 1h and Figure 1i). In contrast, if the moderately 362 
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susceptible hybrids (hybrid 1 and 2) were cultivated in the Leeper silty clay loam, the likelihood 363 

for contamination above the legal limit (20 μg/kg) was less than 50% (y-axis) even when the 364 

crops were exposed to extreme drought conditions (ARID > 0.800, x-axis) on week four 365 

following mid-silk (Figure 1a-b, Figure 1d-e). This holds when the crop cultivated in the Leeper 366 

silty clay loam was exposed to low stress (ARID = 0.069, Figure 1a and Figure 1d) or moderate 367 

stress (ARID = 0.412, Figure 1b and Figure 1e) the week preceding mid-silk.  368 

Our study indicates that drought conditions close to corn harvest in Mississippi reduce 369 

aflatoxin contamination levels when compared with the earlier vegetative and reproductive crop 370 

stages. The impact of reduced drought late in the season on aflatoxin accumulation in corn grain 371 

was indicated in all scenarios presented in Figure 2.  372 

 373 
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Figure 2: Predicted probabilities (Mississippi analysis) for having aflatoxin contamination above 

the threshold of 20 μg/kg with changes in drought conditions on the eighth week after mid-silk, 

given that moderately (Hybrids 1 & 2) and highly (Hybrid 3) susceptible hybrids are cultivated 

under Leeper silty clay loam (solid line) and Myatt loam (dashed line). Three scenarios 

(columns) are presented herein for each hybrid (rows): 1) low (ARID=0.015), 2) medium 

(ARID=0.435) and 3) severe (ARID=0.856) drought conditions for the week four after mid-silk. 

Week four and one before mid-silk were set fixed to their respective mean values. 

 374 

For all the scenarios studied, late in-season drought (week eight after mid-silk) decreased the 375 

relative risk for grain contamination for both soil types, regardless of hybrid type (Figure 2). 376 

Drought is commonly associated with higher than normal surface temperatures, prolonged 377 

periods of no or minimal precipitation (McNab and Karl, 1991), and drier air than usual 378 

(Baldwin, 1957; McNab and Karl, 1991; Potter, 1958). Thus, our results are in agreement with 379 

Cotty (2001) who suggested that aflatoxin contamination of a mature cotton seed is promoted by 380 
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warm temperature, high relative humidity (above 85%) or wetting events at or after ball opening. 381 

Similarly, our findings agree with Jaime-Garcia and Cotty (2003) who showed that increased 382 

rainfall late in the season was associated with increased seed contamination levels in cotton in 383 

Texas. A drought increase late in the season might be associated with drier air than usual, and 384 

thus, less than normal dew formation, which could explain the reduced aflatoxin contamination 385 

risk with drought increase on week eight after mid-silk. This agrees with McMillian et al. (1985) 386 

who found that when corn ears were water sprayed from the third to sixth week after full silk 387 

they had higher levels of contamination than non-sprayed ears. It was suggested that heavy 388 

morning dews may promote preharvest corn contamination in the Southeast US (McMillian et 389 

al., 1985). Likewise, an increase in drought is usually associated with higher air temperatures. 390 

August average minimum temperature was negatively associated with aflatoxin incidence and 391 

severity in corn studies over nine locations in USA (Sisson, 1986). The eighth week after mid-392 

silk in our study corresponds to a week before harvest, and depending on the season, ranged from 393 

the first calendar week of August to the first calendar week of September. It was suggested by 394 

Sisson (1986) that higher night temperatures could hasten corn maturation and reduce incidence 395 

of dew formation, a factor that could be related to fungal development and aflatoxin synthesis, 396 

and could explain the findings of our work on week eight after mid-silk. Battilani et al. (2008a), 397 

showed that in Northern Italy, aflatoxin contamination risk was higher when drought increased 398 

on the last ten day window of June, and the first and last ten day windows of August. In the 399 

Mississippi study, the contamination probability was increased by increasing ARID values on 400 

weeks four and one before mid-silk, and on week four after mid-silk that correspond to late 401 

vegetative and early reproductive corn stages, respectively. However, our data showed that the 402 
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risk for aflatoxin contamination was reduced by increasing drought on week eight after mid-silk 403 

(a week prior to harvest).  404 

The variability in drought conditions during the periods found in this study impact the extent 405 

of preharvest aflatoxin contamination in corn. Timing and the degree of drought, along with soil 406 

type and hybrid resistance on infection and subsequent toxin accumulation can significantly 407 

change the likelihood for aflatoxin contamination. Seasonal fluctuations drive the dynamic 408 

relationships in the micro-organismal community, change the fungal community structure along 409 

with the quantity of both aflatoxigenic producers and the available primary and/or secondary 410 

inoculum in the field (Cotty and Jaime-Garcia, 2007). Plant exposure to different drought stress 411 

levels when crops are grown in different soil types with variable soil plant available water may 412 

predispose corn to A. flavus infection and subsequent aflatoxin contamination. Different 413 

genotypes respond to environmental stresses in different ways. For example, in most of the 414 

genotypes tested greater levels of contamination were observed for corn crops indicating the 415 

highest physiological responses to drought and heat stresses, thus revealing a relationship 416 

between aflatoxin accumulation and those stresses (Kebede et al., 2012). In the same study, an 417 

aflatoxin resistant genotype had the lowest contamination levels despite being one of the most 418 

stressed crops; this suggested that the resistance mechanism for this genotype might be more 419 

complex. The findings indicate that soil type and genotype are likely to influence the final toxin 420 

accumulation in the grain, and may explain contradictory reports among different studies.  421 

3.2 Model evaluation – Mississippi analysis 422 

Binary response models, including logistic regression models, can be assessed by calculating 423 

the AUC. The AUC for the developed model was equal to 0.8233, and was forecasting 424 

significantly better than a model predicting by chance (AUC = 0.5000; p-value < 0.0001) (Figure 425 
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3).  426 

 427 

 
Figure 3: Receiver Operating Characteristic curves for the fitted model (Model), and for each 

significant variable as identified in the logistic model, indicating the relative weight of each 

predictor variable on the studied association (Aflatoxin predicted probabilities vs. predictor 

variates). Uninformative is the model with no predictive power (predicting by chance). Values in 

parentheses correspond to area under the curve (AUC) calculated for each particular model 

tested; Mississippi analysis. 

 428 

Applying the fitted model to the evaluation dataset resulted in a negligible decrease in the 429 

predictive power (AUC = 0.8092) (Figure 4). A significant contrast test (p-value < 0.0001) 430 

indicated that the developed model was better than the uninformative model (AUC = 0.5000) 431 

when applied to the evaluation dataset. Therefore, the proposed predictive model could correctly 432 

predict the risk in nearly 82% of the cases. Thus, ROC curve analysis showed that the developed 433 

model proposed herein could identify true positives and minimize false negatives at acceptable 434 
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levels of accuracy.  435 

 436 

 
Figure 4: Receiver Operating Characteristic curve from applying the fitted model (Externally 

evaluated model) to the evaluation dataset, compared to the AUC (Area Under the Curve) of 

the uninformative model (Model). Values in parentheses correspond to calculated AUC; 

Mississippi analysis. 

 

 437 

As indicated by their respective ROC curves, when weekly ARID values four and eight after 438 

mid-silk along with hybrid resistance to infection and subsequent contamination were considered 439 
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as individual predictors, they had the highest relative impact on the measured associations 440 

(Figure 3). In contrast, sub-models with only soil type or week four before mid-silk as 441 

independent factors alone had the lowest AUC’s equal to 0.5841 and 0.5673, respectively 442 

(Figure 3). All the single independent variable sub-models (Figure 3) had a significantly reduced 443 

predictive power when compared to the overall model (p-value < 0.0001). However, when the 444 

sub-models were compared to the uninformative model (AUC = 0.5000), their discriminative 445 

power between events and non-events was statistically significant (p-value < 0.0151) for all but 446 

the sub-model having week four before mid-silk alone as an independent variable (p-value = 447 

0.0732). 448 

3.3 Predicting the risk at a regional level  449 

The logistic regression model showed that significant predictors (p-value ≤ 0.05) for 450 

aflatoxin contamination in Georgia were the calculated drought levels during weeks eight, seven, 451 

and three before mid-silk, along with weeks two, four, and nine following mid-silk (Table 2). 452 

The effect of drought on the likelihood of corn aflatoxin contamination changed both in 453 

magnitude and direction (positive and negative) through the season. For example, a 0.1 increase 454 

in drought conditions during week four and nine after mid-silk was estimated to increase the 455 

odds of having contamination above the 20 μg/kg legal limit by 71.8 and 77.0%, respectively. 456 

Interestingly, if the average weekly ARID value for weeks eight and three before mid-silk was 457 

increased by a value of 0.1, then the predicted odds for contamination were 3.4 and 1.3 lower 458 

than the odds of non-events (contamination below 20 μg/kg). Similarly, the model showed that a 459 

reduced drought on week two after mid-silk resulted in an increased risk. In contrast, an 460 

increased early drought stress (week 7 before mid-silk) significantly increased the likelihood for 461 

aflatoxin accumulation above the action limit (20 μg/kg) in the grain at the end of the season.  462 
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Table 2: Odds ratio estimates and profile-likelihood confidence intervals for statistically 463 

significant independent variables for Georgia data analysis as determined from the logistic 464 

regression model via stepwise selection with entry and exit values set to α = 0.05. 465 

Effect Unit Odds Ratio Estimate 95% Confidence Limits 

Week 8 before mid-silk 0.1 0.295 0.182 0.430 

Week 7 before mid-silk 0.1 3.167 1.978 5.884 

Week 3 before mid-silk 0.1 0.749 0.576 0.955 

Week 2 after mid-silk 0.1 0.729 0.574 0.907 

Week 4 after mid-silk 0.1 1.718 1.360 2.245 

Week 9 after mid-silk 0.1 1.77 1.403 2.308 

 466 

This study showed that the risk for aflatoxin accumulation changes over the growing season. 467 

Drought conditions at particular weekly intervals relative to mid-silk, had influenced the 468 

likelihood for contamination above the legal limit (20μg/kg) set by U.S. FDA. Moreover, the 469 

estimated probability for aflatoxin contamination to exceed 20 μg/kg was defined by the level of 470 

dry/wet cycles in the preceding critical timespans. For example, if the plant was exposed to low 471 

to moderate drought on week seven (ARID < 0.492) before mid-silk, then the risk remained well 472 

below 20%, even if extreme drought occurred on week four after mid-silk (ARID = 1.000) 473 

(Figure 5a-c). However, if the ARID value on week four following mid-silk was ≥ 0.6, reflecting 474 

a moderate in-field drought situation, then the probability for contamination above the legal limit 475 

exceeded 40% (Figure 5e).  476 
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Figure 5: Predicted probabilities (Georgia analysis) plot panel indicating aflatoxin risk change 

when drought conditions are changing on week four after mid-silk for five different aridity 

scenarios early in the seasons (week 7 before mid-silk). ARID values for the rest of the weeks 

were set equal to their mean. Shaded band represent confidence limits at α = 0.1. 

 

 477 

Under extreme drought conditions on week nine (ARID > 0.800) and week four (ARID = 0.998) 478 

after mid-silk, other things being equal, the likelihood for aflatoxin contamination above the 479 

action level (20 μg/kg) approached 40% (Figure 6e). Those observations may reflect not only the 480 

complex interactions that take place between biotic and abiotic factors impacting fungal growth, 481 

sporulation, inoculum dissemination, infection, toxin synthesis, and accumulation, they also 482 

indicate the interconnectivity and the interdependence of process, that constantly change during 483 

the growing season and occur at the host plant level, fungal level, and each particular 484 
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environment. 485 

 486 

 
Figure 6: Predicted probabilities (Georgia analysis) plot panel indicating aflatoxin risk change 

when drought conditions are changing on week nine after mid-silk for five different aridity 

scenarios for week four following mid-silk. ARID values for the rest of the weeks were set equal 

to their mean. Shaded band represent confidence limits at α = 0.1. 

 487 

As shown in this study, predicting aflatoxin risk at field (plot) level based on soil type, 488 

hybrid, and drought conditions is promising. Predicting the likelihood of contamination at a 489 

regional level might be more challenging due to multiple soil types, the very different weather 490 

conditions encountered across a region and their effect on the fungus, the host, and their 491 

interactions. Consequently, questions have been raised about the feasibility of the methodology 492 

proposed herein. Lack of data (e.g. planting date, crop growth stage, soil types, hybrids) added to 493 
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the overall uncertainty, and required informative assumptions (i.e. determination of potential 494 

planting dates for a given area and season) and estimations (e.g. forecasting mid-silk day by 495 

calculating GDU). In regional studies, due to data limitations, meteorology might be the only 496 

driving factor available to assess risk, and thus, a simple predictive system might be more 497 

desirable and applicable. For all these reasons, our approach to assess the likelihood of corn 498 

contamination above the legal limit at county level was based only on minimum weather data 499 

(maximum temperature, minimum temperature, and rainfall). 500 

3.4 Model evaluation – Georgia analysis 501 

Contaminated and non-contaminated samples used for model development equaled to 620 502 

(93.37%) and 44 (6.63%) samples, correspondingly. The evaluation dataset contained 154 503 

samples, 91.56 and 8.44% were classified as non-events (had aflatoxin contamination below the 504 

20 μg/kg threshold) and events, respectively. The AUC for the developed model was 0.9744 (p-505 

value < 0.0001) and was predicting significantly better than the model predicting by chance 506 

(AUC = 0.5000) (Figure 7).  507 

 508 
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Figure 7: Receiver Operating Characteristic curve for the fitted model (Model). Uninformative is 

the model with no predictive power (predicting by chance). Values in parentheses correspond to 

calculated area under the curve (AUC); Georgia analysis. 

 509 

When the developed model was applied to the evaluation dataset, the ROC curve dropped to 510 

0.9177 (Figure 8). Despite that, the ROC contrast test was significant (p-value < 0.0001), 511 

indicating that the developed model was more accurate in predicting contaminated from non-512 

contaminated samples when compared to the uninformative model (AUC = 0.5000).  513 
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 514 

 515 

 
Figure 8: Receiver Operating Characteristic curve from applying the fitted model (Externally 

evaluated model) to the evaluation dataset, compared to the AUC of the uninformative model 

(Model). Values in parentheses correspond to calculated AUC; Georgia analysis. 

 

 516 
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3.5 Comparing the results – field (plot) versus regional 517 

Analyses using both Mississippi dataset and Georgia dataset indicated that drought, as 518 

quantified by weekly ARID values, is a significant driving factor that influences the risk for 519 

contamination. However, the timespans (weeks) indicated as significant varied between the 520 

Mississippi and Georgia data sets (Table 1 and Table 2). Only week four after mid-silk  was 521 

identified as significant by both models. Additionally, both studies are reflective of what has 522 

been observed by other researchers (Hawkins et al., 2008; Windham et al., 2009), as well; 523 

infection and subsequent aflatoxin contamination are likely influenced by environmental stresses 524 

(e.g. drought, temperature, and moisture stresses) occurring prior to silking. Perhaps more 525 

attention and studies under controlled environments (greenhouse) considering corn vegetative 526 

growth stages might be needed to determine if those early stresses provoke physiological 527 

responses/processes at the plant and/or fungal level on the variability in toxin accumulation 528 

observed at the end of the season. 529 

The differences on the results from both studies may be related to the assumptions made on 530 

the Georgia data. The planting dates and mid-silk stages were estimated, and corn samples were 531 

collected from fields within a county but there is not information on the specific location. These 532 

issues may have reduced the power of the model especially because weekly ARID calculations 533 

rely on that information. From experience, it is known that weather, and particularly rainfall 534 

amount and distribution, can be highly variable even over relatively short distances. Therefore, 535 

interpretation of odds estimates from the regional model has to be approached with extreme 536 

caution. For example, the odds estimates for week three prior to mid-silk and week two after 537 

mid-silk derived from the Georgia analysis suggest that increase in drought results in lower risk 538 

(Table 2). This contradicts other studies that have shown that extended aflatoxin levels in corn 539 
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are commonly encountered in seasons or at field locations associated with drought stress (Abbas 540 

et al., 2002; 2004; Davis et al., 1986; Diener et al., 1987; Windham et al., 1999). Abbas et al. 541 

(2004) had shown that the incidence of A. flavus propagules recovered from corn grains was 542 

greater in a field site that had received supplemental water compared to other field sites. The 543 

opposite trend was observed for aflatoxin contamination levels; moreover, no association 544 

between aflatoxin contamination and colonization levels was detected. Thus we may conclude 545 

that the odds ratios for week three prior to mid-silk and week two following mid-silk, as 546 

suggested by the Georgia model, are likely erroneous.  547 

We consider the model from the Mississippi study more robust, since the data obtained were 548 

derived from a controlled in-field experiment. Hence, potential strategies to mitigate aflatoxin 549 

contamination should rely more on the information derived from the controlled (Mississippi) 550 

experiment which is in agreement with the principle knowledge of the phenomenon. Therefore, 551 

the Georgia results should be rather considered as a preliminary work illuminating the potential 552 

of the proposed methodology to assess the risk over a larger regional area; however, a more 553 

detailed georeferenced database will be necessary to address the limitations and contradictions 554 

observed herein. Additionally, agronomic information such as hybrid type, growth stages (at 555 

least planting dates and/or mid-silk) may add to the robustness of a future regional model. 556 

3.6 Potential strategies to mitigate pre-harvest contamination 557 

Site-specific management strategies could be adapted at the beginning or through the season 558 

to minimize host plant stress, which may reduce aflatoxin risk. Use of irrigation during critical 559 

risk weeks may reduce the risk (Fortnum and Manwiller, 1985; Jones et al., 1981; Payne et al., 560 

1986); but irrigation amount and timing should be based on crop needs, atmospheric conditions, 561 

and soil water holding capacity. Planting date adjustment, within-field planting density and/or 562 
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selection of hybrids with suitable relative maturities to reduce plant exposure to drought stress 563 

during critical growth timespans should be considered as well (Abbas et al., 2007; Bruns and 564 

Abbas, 2006; Alvarado-Carrillo, et al.; 2010; Payne and Widstrom, 1992). A grower could 565 

consider selecting of the most appropriate hybrid for a given site/region based on soil type and 566 

drought risk assessment in a particular locality. Separation of the field into management zones 567 

based on risk stratification criteria (e.g. soil texture, plant available water holding capacity, 568 

electrical conductivity, and/or soil organic matter content) could be considered as well. 569 

Separation of the field into management zones will allow to: 1) plant appropriate hybrid type per 570 

zone, 2) segregate harvest if necessary, and 3) apply variable rate irrigation/fertigation at 571 

different zones as needed. Determination of best harvest timing may be based on the predicted 572 

contamination risk for a particular season and location (Battilani et al., 2013). Therefore, 573 

decisions for early harvest, subsequent grain drying, and proper grain storage aiming to 574 

reduce/cease further infection and toxin accumulation, might be an option (Hell and Mutegi, 575 

2011); but the additional associated cost needs to be accounted for. Grain storage segregation 576 

based on risk prediction for different harvested lots is an option (Ni, et al., 2011). 577 

In addition, risk maps (Battilani et al., 2016) by county or by regions within a single state or 578 

regional risk maps could be generated using ARID data. Those regional aflatoxin risk maps 579 

might be useful for adaption or implementation of risk mitigation strategies including: 1) 580 

selection of drought tolerant corn hybrids in high risk areas, 2) cultivating cover crops for soil 581 

moisture conservation on high risk areas, 3) shifting in planting dates, and 4) applying variable 582 

rate irrigation and seed to minimize plant water stress. Moreover, the logistic model used herein 583 

to predict aflatoxin risk in corn, could be incorporated into decision support systems (Chauhan et 584 

al., 2015) and develop on-line tools to predict the risk earlier in season based on changes in 585 
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drought conditions during corn growth and development. This may allow for more informative, 586 

effective, and efficient crop management decisions by the producers and the agri-business 587 

sectors (Battilani et al., 2013; Chauhan et al., 2015; Cotty and Jaime-Garcia, 2007).  588 

4. Conclusions 589 

Results from the control experiment (Mississippi) analysis indicated that ARID could be used 590 

as a predictive tool for aflatoxin risk assessment. Hybrid susceptibility to 591 

infection/contamination, along with soil type contributed significant to predicting aflatoxin 592 

occurrence. Additionally, this work identified significant weeks during the growing season when 593 

changes in drought had an influence on the likelihood of aflatoxin contamination. This study 594 

illuminated that the critical timespan for infection and subsequent contamination extend both 595 

prior and beyond mid-silk. Time windows, as indicated by the Mississippi study when changes in 596 

drought have the greatest influence on aflatoxin risk, included weeks four prior and after mid-597 

silk, among others. Additionally, the highly susceptible hybrid grown in lighter soil showed a 598 

higher risk for aflatoxin contamination with changes in drought conditions during critical week 599 

windows compared to the moderately susceptible hybrids grown in the heavier soil. The 600 

proposed methodology was extended from field (plot) level to a regional scale (Georgia study), 601 

and the results are presented here in as well. Both predictive models were externally assessed on 602 

independent datasets and showed high accuracy in classifying samples as contaminated above or 603 

below the preselected threshold (20 μg/kg). Identifying critical weeks influencing the risk for 604 

contamination early in the season may allow farmers, researchers, and extension specialists to 605 

monitor changes of aflatoxin risk with in-season drought changes, and thus, make more 606 

informative management decision in an effort to mitigate the problem (Battilani et al., 2013; 607 

Chauhan et al., 2015; Cotty and Jaime-Garcia, 2007). This is true particularly during years 608 
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characterized by conducive to toxin accumulation conditions. Finally, this work emphasizes the 609 

effect drought timing and drought severity has on pre-harvest corn aflatoxin risk alterations 610 

during the season and further illuminates the impact drought has on contamination levels under 611 

different environments. 612 
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